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Abstract. We study a new biologically motivated model for the Macaque monkey primary
visual cortex which presents power-law avalanches after a visual stimulus. The signal propagates
through all the layers of the model via avalanches that depend on network structure and
synaptic parameter. We identify four different avalanche profiles as a function of the excitatory
postsynaptic potential. The avalanches follow a size-duration scaling relation and present critical
exponents that match experiments. The structure of the network gives rise to a regime of two
characteristic spatial scales, one of which vanishes in the thermodynamic limit.

1. Introduction
Brain criticality has gained wide attention in the last years [1, 2, 3]. Several studies have
shown how multiple cognition features are improved when considering the brain as a critical
system. Some of these features are the optimization of response dynamic range [4, 5] and the
enhancement of memory and learning processes [6, 7], computational power [8, 9], information
processing flexibility [10] and network processing time [11].

The visual system has such a collection of experimental results [12, 13] that makes it suitable
for validating models. Recently, some authors probed cortical tissues and sometimes specifically
the visual cortex looking for neuronal avalanches both in vitro and in vivo [14, 15, 16, 17].
We developed a model of the primary visual cortex (V1) based on experimental constraints in
order to study how do the microscopic details of the system shape the avalanche dynamics and
statistics.

The stimulation of the retina of our model gives rise to avalanches. The avalanches spread
radially inside each layer and through a branching process across different columns. The
columnar structure and the whole network excitation are evident in the avalanches size and
duration distributions which present two distinct power-law (PL) behaviors for a given excitatory
postsynaptic potential (EPSP) range. We computed the exponents of these distributions and
checked that they obey Sethna’s scaling law [18] even when the system is adjusted outside of
the critical regime.

Next section is dedicated to describe the model dynamics and structure. Section 3 brings
results and discussions concerning the information processing of the network via avalanche
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Figure 1. The V1 model. A: Architecture of the network. B: Spatial organization of the
network of N = 4L2 neurons. Each neuron in the network is at the center of a column of
size Nc = 4l2 = 196 neurons defined by the algorithm used to create synapses. This columnar
structure in highlighted in red in Panel B. C: Compartmental scheme of neurons. Neuronal
synapses start preferentially from the end of the axon (left), as given by the probability P(ak) of
choosing a presynaptic axonal compartment ak. The dendritic postsynaptic compartment, dm,
is chosen with a Gaussian probability P(dm) with mean 50 and standard deviation 10. Most
synapses lay in the middle of the dendrite (right).

activity. After that, we conclude reviewing the main results and we point some possible
extensions for this work.

2. Model
The model developed by Andreazza & Pinto is composed of six square layers [19]. The layers
are connected to each other following a feed-forward mechanism with a single loop presented in
Fig. 1A. No lateral connections are present inside the layers. The signal propagates from the
retina (Input layer) to the secondary visual cortex V2 (Output layer).

The four internal layers have linear size L and correspond to the form recognition pathway
within V1 (composed of layers II/III, IVCβ and VI) plus the lateral geniculate nucleus (LGN).
The LGN layer consists of only its parvocellular neurons. The synapses of such neurons are
mostly connected to V1 layer IVCβ [20, 21, 22, 23].

2.1. Network structure
The network has a total of Nfull = 2Nio+N elements. The four internal layers (LGN, VI, IVCβ
and II/III) are composed by L2 neurons each, summing up to a total of N = 4L2 neurons. The
neurons are composed of compartmental dendrites and axons connected by a soma compartment
as seen in Fig. 1C. Each of the input/output layers has a total of Nio = (10L)2 elements.
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Table 1. The quantity of attempted synapses per presynaptic element from a specific layer
(rows) to another layer (columns). Presynaptic element may be a photoreceptor (from Input
layer) or a neuron (from internal layers). These values are predefined in the beginning of the
simulation, but are not exactly achieved in practice because of free boundary conditions.

From \ To LGN VI IVCβ II/III Output

Input 1 - - - -
LGN - - 500 - -
VI - - 1100 350 -

IVCβ - 600 - 700 -
II/III - - - - 100

The Input layer represents the photoreceptors of the retina. The Output layer consists of
axonal terminals which connect to dendrites in V2. Each neuron of the LGN is placed in front
of a matrix of 100 photoreceptors of the Input layer. A similar structure is present on the other
end of the network where each neuron in layer II/III randomly sends 100 synapses towards a
10× 10 matrix in V2.

Layers are positioned parallel to the x − y plane and are stacked along the z direction (see
Fig. 1B). Each presynaptic neuron j has a spatial position ~rj = (xj , yj , zj). The number of
synapses that each neuron of each layer sends towards its adjacent layers are fixed according to
Table 1.

Every postsynaptic neuron is chosen in the adjacent layer with the use of a bidimensional
Gaussian distribution, PG(x, y;xj , yj , σc) centered in the presynaptic neuron (xj , yj) position
with standard deviation σc = 3 inside a limited region of l2 = 7 × 7 neurons. This mechanism
creates a columnar structure as shown in Fig. 1B.

Each column has approximately Nc = 4l2 = 196 neurons. When taking into account the loop
between layers IVCβ and VI, the columns can be considered to have Nc = 5l2 = 245 neurons.
Such structure is very important for the simulation results. Synapses sent by neurons on the
border of each layer that fall outside of the adjacent layer are simply ignored (free boundary
conditions).

Once postsynaptic neurons are chosen for every presynaptic neuron, we pick one axonal

compartment a
(j)
k of the presynaptic neuron j with exponential probability PE(k) =

(10/4) exp (10k/4) and one dendritic compartment d
(i)
m of the postsynaptic cell i, chosen with

Gaussian probability PG(m; d(c), σd) to form each synapse. Here d(c) = 50 and σd = 10. These
distributions are plotted in Fig. 1C.

Synaptic distribution over dendritic compartments is chosen such that the probability of
receiving a synapse in the dendrite is maximum at its center [24] and that any consecutive
synapses are uncorrelated. Axonal compartments distribution is chosen such that most of the
synapses come out of the axon’s end, making the signal travel as far as possible.

2.2. Neuronal and synaptic dynamics

Each neuron i is composed of a compartmental dendrite [d
(i)
m (t); m = 1, · · · , 100, Eq. (1)], the

soma [vi(t), Eq. (2)], and a compartmental axon [a
(i)
k (t); k = 1, · · · , 10, Eq. (3)]. The action

potential advances one compartment per time step t. This potential comes from the dendrites,
passes through the soma and finally reaches the last axonal compartment:
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d
(i)
1 (t+ 1) = λE

∑
j,n
a
(j)
n (t) ,

d
(i)
k (t+ 1) = λ

[
d
(i)
k−1(t) + E

∑
j,n
a
(j)
n (t)

]
, for k > 1,

(1)

vi(t+ 1) =


Θ
(
d
(i)
100(t)− vT

)
, if vi(t) = 0 ,

−R , if vi(t) = 1 ,
vi(t) + 1 , if vi(t) < 0 ,

(2)

a
(i)
1 (t+ 1) = Θ (vi(t)) ,

a
(i)
k (t+ 1) = a

(i)
k−1(t), for k > 1,

(3)

where λ = 0.996 is the attenuation constant (following experimental results [24]), vT = 10 mV is
the firing threshold, R is the refractory period (which is sufficient to avoid self-sustained activity
within the interlayer loop) and E > 0 is the EPSP (of the order of 1 mV [24, 25, 26]). The
double sum in Eq. (1) is over all the axonal compartments of presynaptic neuron j connected
to the dendritic compartment of the postsynaptic neuron.

The different amount of dendritic and axonal compartments for each neuron takes into
account the different velocities of signal propagation for a time step of 1 µs. In addition, the soma
time step is of 1 ms, so that avalanches have a larger time scale than the propagation of the signal
through the neurons compartments. The travelled distance in the dendrites is about 100 µm

and for the axons 1000 µm [27]. Initial conditions are a
(i)
k (0) = d

(i)
m (0) = vi(0) = 0 ∀ (k,m, i)

for all the neurons of the internal layers. A square of 30 × 30 photoreceptors is flashed in the
first time step in order to spark activity. Results are stable for different locations of the retina
activation stimulus.

3. Results and discussion
We performed about one hundred simulations for each network linear size, L, and each EPSP,
E. The activity of the network is the sum of all the neurons firings at each time step,
A(t) =

∑N
i=1 δvi(t),1, where δa,b is the Kronecker delta. An avalanche size is defined as the

total activity between two consecutive instants of inactivity (similarly to the experimental
procedure [15, 28]), and the avalanche duration is simply the time interval between these
consecutive instants of inactivity,

s(n+ 1) =

tn+1∑
t=tn

A(t) , (4)

T (n+ 1) = tn+1 − tn , (5)

where A(tn) = A(tn+1) = 0.
On the critical point, the distributions of s and T are assumed to scale as [29]

P(s) ∼ s−αGs (s/sc) , (6)

P(T ) ∼ T−τGT (T/Tc) , (7)

LGN IVCβ VI IVCβ VI · · ·

II/IIIII/IIIII/IIIII/III

Figure 2. Schematic representa-
tion of signal branching process in
the network. This follows from the
network architecture in Fig. 1.
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where sc and Tc are the cutoff values of s and T , Gs,T (x) are scaling functions that describe how
the cutoff of the distributions scale with system size and α and τ are scaling exponents that
should follow Sethna scaling relation [18]:

a =
τ − 1

α− 1
, (8)

where a is a growth exponent relating avalanches size and duration,

〈s〉 ∼ T a . (9)

The scaling law of Eq. (8) must be obeyed if Eqs. (6) and (7) hold within a large enough interval
of s and T .

3.1. Spatio-temporal profile of avalanches
Activity is initiated in the LGN and sent towards layer IVCβ inside a small localized region due
to the columnar structure of the network. This small activated region in layer IVCβ acts as a
seed for firing localized activity in the adjacent layers, VI and II/III. The activity of layer II/III is
just sent over to V2 while activity from layer VI serves as another seed for firing localized activity
again in layer IVCβ. Now, the neurons that have already fired in layer IVCβ are refractory,
so only the neurons around the first seed region will fire this time. This process constitutes a
branching process between layers, as illustrated in Fig. 2 and in Fig. 3 top left panel.

As a consequence of the branching process, the activity spreads as spiking circular waves
inside each layer. The spatial profile of these circular avalanches is in Fig. 3. The top left panel
illustrates how the activity spreads throughout the network internal layers starting in the LGN.
Red and white colors indicate the sequence of time steps, although not necessarily immediate
consecutive time steps. Activities represented in red always come after activities represented in
white and vice-versa.

Two features should be noticed with the help of Fig. 3: firstly it shows that there is a
qualitative change in the behavior of the network as E increases: for E < 1.12 mV the signal
does not reach the border of the layers. For 1.12 ≤ E ≤ 1.19 mV, there is a vanishing probability
of reaching the borders whereas for E > 1.19 mV the activity always reaches the border. This
behavior indicates that E = 1.19 mV is a critical point.

Secondly, notice that as E increases, layer II/III activity starts to happen simultaneously
with activity in both layers VI and IVCβ because less and less presynaptic neurons (in the seed
region) are needed to cause any neuron to fire. Such profile reduces the silence intervals between
consecutive avalanches (see Fig. 4A). Thus for large E = 13 mV, the activity spatial profile
reduces to a two-dimensional radial wave front propagating simultaneously in the three layers
via a single very large avalanche.

Columns therefore play a significant role by propagating activity only for E ≥ 1.12 mV but
yet with E sufficiently small so that a neuron needs a considerable amount of presynaptic active
neurons to pass on the signal forward.

The temporal profile of avalanches is shown in Fig. 4A for four typical EPSP. Notice that
there is also a qualitative change in the activity temporal profile as E increases. The network
processing time (the time interval between stimulation and the last spike in the network)
continuously increases for increasing E < 1.21 mV. However, the variance of the processing
time is maximal for the whole interval 1.12 ≤ E ≤ 1.19 mV. The maximum variance for a finite
interval indicates that the system is very flexible to process information inside this region and
also might signalize the presence of a critical Griffiths phase [30, 31].

Processing time is maximum for E = 1.21 mV and decreases asymptotically for increasing
E > 1.2 mV because the activity across layers becomes entangled. The entanglement of activity
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Figure 3. Spatial profile of avalanches in the internal layers for different E. Each circle is
a snapshot of the network in a different time step. Top left panel illustrates the temporal
order of events which is useful to analyze the other panels: Activity starts in the center of the
LGN and then follows the directions pointed by the arrows. Circle colors are used to indicate
temporal sequence: activity in red always follows activity in white and so on, although not in
the immediate next time step. E = 1.10 mV: the signal travels through all layers but is unable
to reach the border of the layers; layer II/III spikes only together with layer VI. In fact, this
means that avalanches are spreading only inside columns in a sort of branching process (see
Fig. 2). Starting from E = 1.12 mV, activity has probability to reach the border of the layers.
For E = 1.21 mV, the activity always reaches the border; layer II/III spikes together with VI,
although some of II/III neurons spike together with IVCβ due the signal coming from VI. The
panels with E = 1.70 mV, 2.00 mV show how the entanglement of activity in layers IVCβ and
II/III strengthens for larger EPSP; the avalanches become larger due to less inactivity intervals
(see Fig. 4A). For E = 13.00 mV activity in layer VI, IVCβ and II/III are so entangled that a
single large avalanche appears and radially spreads inside the network.

decreases the waiting times between avalanches. Such behavior is evident for E = 2.0 mV, in
which there is a large avalanche ranging from about t ≈ 900 until t ≈ 2100 time steps, and also
for E = 13 mV.

3.2. Avalanche distributions
We computed the normalized probability and complementary cumulative distributions of the
avalanche sizes and duration. The complementary cumulative distribution (henceforth referred
only as cumulative distribution) is the probability of measuring an avalanche of size s or greater.

In our model the information processing may have four different avalanche profiles (see
Fig. 4B). First, for E < 1.12 mV only small avalanches occur. The signal is still able to travel
throughout all the layers, but only a few neurons are in fact activated – this is the disordered
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Figure 4. A: Temporal profile of the avalanches for different E. Arrows mark total processing
time; B: Distributions P(s) of avalanches sizes for four typical E values, one in each regime
described in the text. An avalanche size is the total activity between two consecutive instants
of inactivity in Panel A; C: P(s) for multiple network sizes L on the critical point E = 1.19 mV
(notice how the cutoff scales with system size); D: P(s) for different L on the weakly ordered
regime for E = 1.88 mV (notice the bump in the middle of the distribution localized around
s = Nc ≈ 200 neurons); The insets in panels C and D show the corresponding complementary
cumulative distributions F(s) for each L and E. Dashed lines are only present to guide the eyes.

regime (or subcritical phase). Second, the region for 1.12 ≤ E ≤ 1.19 mV is critical : there
are many small and large avalanches and each layer activity is disentangled from the other, as
discussed in Section 3.1 and shown in Fig. 3. Fig 4C shows the PL fit of the avalanche size
distribution on the critical point. Such distributions equal all the distributions in the critical E
range. Notice how the largest avalanche, and hence sc and Tc, scale with system size.

The third behavior lies in the range 1.20 ≤ E ≤ 2.00 mV, where large avalanches begin
to dominate network activity, making the distributions tails heavier as E is increased. Fig 4D
shows the distribution for E = 1.88 mV and many system sizes. In this EPSP range, we can
identify two different PL behaviors, one for small avalanches and another for large ones due to
the entangling of activity across different layers. The characteristic bump in the middle of the
distribution happens exactly for avalanches of size s = Nc ≈ 200. Thus, small avalanches happen
mostly because of disentangled activity inside the network columns whereas large avalanches are
due to activity that span multiple layers. We call this regime weakly ordered.

Finally, for E > 2.00 mV the network is swept by one large avalanche (see Fig. 4A and
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Figure 5. The size-duration scaling relationship for the avalanches for different E. The points
are the simulation data and the dashed lines are the corresponding fits for 〈s〉 ∼ T a yielding
aFit in Table 2. A: E = 1.1 mV, only very small avalanches are present; B: E = 1.19 mV
is the critical point and presents PL distributed avalanches for all scales; C: E = 1.88 mV is
in the weakly ordered regime and presents a small gap between very large avalanches and the
remaining ones (each large avalanche corresponds to a new realization of the simulation); D: for
E = 13 mV there is a huge gap between the many very large avalanches and some remaining
small avalanches, where each large avalanche is a simulation realization.

Fig. 4B) that spans through all the layers simultaneously during the entire simulation time.
The small avalanches regime is still a PL (purple triangles in Fig 4B is a PL for s . 100),
although these avalanches are just the spark in the LGN used to start activity. This behavior
is stable for any initial condition, so this is the strongly ordered regime. Together, weakly and
strongly ordered regimes make up a supercritical phase.

We calculated the critical exponent α [Eq. (6)] in Figs. 4 B, C and D with the collapse of
the cumulative distributions for different system sizes, L. This calculation is consistent with a
Maximum Likelihood PL fitting to the PL regime of the distributions [11]. The same procedure
was applied to calculate exponent τ [Eq. (7)]. Some values for α and τ are presented in Table 2
(second and third columns). These values are close to the ones obtained in experiments [14, 17]
and are close to avalanche exponents of absorbing state phase transitions [32]. The collapse of
avalanche distributions also yield dynamical spreading exponents that describe how sc and Tc
increase with L. The growth exponent of the largest avalanche is calculated elsewhere along
with a rigorous study of the discussed phase transition [11].

We find that Sethna’s relation holds even outside of the critical regime, contrary to commonly
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Table 2. The duration and size power-law distribution exponents are shown in columns τ and
α, respectively. Column aDist is obtained with the use of Eq. (8). The values of aFit are obtained
by fitting simulation data in Fig. 5. The percentual error between these two approaches is shown
in the last column. τ , α and aFit have an associated error of 5% each.

E (mV) τ α aDist aFit Error (%)

1.10 1.788 1.602 1.309 1.426 -8.17
1.19 1.596 1.390 1.531 1.470 4.19
1.88 1.737 1.491 1.500 1.434 4.58
13.0 1.520 1.350 1.483 1.688 -12.1

believed [17]. We calculate Sethna exponent a for the four regimes of E using Eq. (8) using the
values obtained for τ and α yielding aDist, the fourth column in Table 2. We also fit the curve
Eq. (9) to data in Fig. 5, yielding aFit, the fifth column in the same table. The percentual error
between these two values for a is presented in column six. The errors for aDist are inherited from
the calculation of τ and α. These scaling exponents are obtained with a fit on the PL regions of
the avalanches size and duration distributions, each having associated errors of 5%. Also, the
values of aFit have associated error of 5%. We can then consider the relative errors between the
two quantities to be negligible. The cutoff sc for both distributions is small, of the order LD

′
,

with D′ = 1.1 [11], and this reflects on the fairly high error values.

4. Conclusion
We studied a model presenting several dynamical and structural features of the primary visual
cortex. Some of which have been proved to be of fundamental importance in the avalanche
dynamics of the system: the columnar structure and the extended body of the neurons. The
first is needed for the signal to activate the entire network even when the excitatory postsynaptic
potential is not strong enough to have a one-to-one neuronal activation. The latter generates the
intrinsic avalanche dynamics of the system since the interval between avalanches is a consequence
of the propagation of action potentials in dendritic and axonal compartments.

We identified four regimes of activity in the system: a disordered regime, in which avalanches
are not able to reach system lateral boundaries and thus avalanches also do not scale with system
size (nevertheless small avalanches are PL distributed); a critical regime, in which avalanches are
PL distributed and avalanche cutoffs scale with system size; a weakly ordered regime, in which
avalanches are PL distributed and are processed in two characteristic size and time scales – one
corresponding to the amount of neurons in a column and the other to the system boundary;
and finally a strongly ordered regime, in which there is a single large dominating avalanche
which scales with system size, although the spark avalanches that initiate activity are also PL
distributed.

We also verified that Sethna’s relation holds for the four regimes and thus we claim that
having PL distributed avalanches (both in size with exponent α and in duration with exponent
τ) that follow the scaling relation a = (τ−1)/(α−1) is not sufficient to tell whether the system is
in the critical state. Instead, a good criterion is to have PL avalanches with cutoff that scale with
system size. Nevertheless, scaling of the cutoff is only a weak criterion to determine criticality.
The strong criterion would be to define an order parameter and its associated susceptibility and
then check for the divergence of susceptibility [11].

Our next steps will be to modify some aspects of the model, e.g. changing the form of the
input signal in order to to see if the behavior and relationships presented by the network are
maintained; adding heterogeneity in E parameter in order to reproduce its real distribution in
the cortex [25, 26]; adapting the excitatory field of each neuron in deeper layers; using synaptic
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dynamics or plasticity [17, 33, 34] to model adaptability [35]; and adding lateral inhibition.
Moreover, we hope to provide here a kinematic framework for microscopic cortical modeling.

We conjecture that our model pertains to Dynamical Percolation-like universality class because
its dynamics resembles that of the generalized epidemic process with immunization [36, 37],
which is part of a broad universality class of absorbing state phase transitions [32].
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