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Universidade Federal de Santa Catarina,
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Abstract

Activity in the brain propagates as waves of firing neurons, namely avalanches. These waves’ size

and duration distributions have been experimentally shown to display a stable power-law profile,

long-range correlations and 1/f b power spectrum in vivo and in vitro. We study an avalanching

biologically motivated model of the Macaque monkey primary visual cortex and find a minimum

of the processing information time as function of the excitatory postsynaptic potential parameter

(EPSP). Surprisingly, this point lies on the edge of a critical phase transition where avalanches

are power-law distributed and have a 1/f b power spectrum, matching experiments. The phase

transition point is analytically determined by a mean field calculation and is close to the expected

experimental value of EPSP in the cortex.
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I. INTRODUCTION

The most important feature of a living complex system to survive is adaptability. In order

to adapt, the organism cannot be inflexible, but also cannot act randomly. The border of

chaos or a critical behavior seems to be the best evolutionary choice to survival beings [1].

Turing conjectured a similar idea referring to our minds and learning machines [2].

More recently, brain criticality have become a trendy research subject [3–5]. Some believe

that the brain became critical by self-organization and selection [3], analogously to the sand-

pile self-organized criticality (SOC) [6]. Criticality have the advantages of maximizing the

response dynamic range [7] of neural networks, optimizing memory and learning processes [8],

the computational power of the brain [9] and information processing flexibility [10].

The brain critical state is characterized using standard equilibrium statistical mechanics

tools, as usual for non-equilibrium phase transitions [11]. The main features of the critical

brain are scale invariance [11, 12], long-range spatial and temporal correlations [11, 13, 14],

power-law (PL) avalanche distributions and 1/f b power spectrum [15]. All of them have

been experimentally found in neural networks either in vitro or in vivo [16–25]. However

PL alone has been questioned as insufficient evidence for the critical regime [9, 26]. We

argue that a sufficient criterion is the finite-size scaling (FSS) of a continuously varying

order parameter [11] additionally to the PL distributed avalanche sizes and duration [15],

which may follow Sethna’s relation [27].

Here we show that the visual processing is optimized near a critical phase transition.

Interestingly, it happens inside a Griffiths phase in which the density of activated neurons,

the largest avalanche and the avalanche size distributions are scale invariants – these features

are observed experimentally [19, 21, 22, 25]. Throughout the critical region, the power

spectrum is of the form 1/f b, with 0.18 ≤ b ≤ 1.7 as experimentally expected [16–18, 20, 24].

The control parameter is the excitatory postsynaptic potential (EPSP) and the critical

region is found close to the experimental values of EPSP in the cortex [28–30]. The EPSP

threshold for a complete network activation is approximated via a mean-field calculation

and is also close to the numerical and experimental values of the parameter. Such control

parameter allow for experimental validation of the model.

The avalanches spontaneously emerge during the constant stimulation of the retina, in-

stead of artificially imposing a Poisson stimulus as in most of the brain critical models
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(see [7, 8, 21, 25, 31–34] to cite a few). Scale-free avalanche dynamics is thus essential for

the reliable processing of information in our model.

II. MODEL

The model for the primary visual cortex (V1) of the macaque monkey consists of inter-

connected square layers (linear size L) propagating the signal directionally from the retina

towards secondary visual cortex (V2) [35]. Only four layers from the form recognition path-

way within V1 are selected: the lateral geniculate nucleus (LGN) and the layers II/III, IVCβ

and VI. The LGN layer consists of only its parvocellular neurons, which synapses are mostly

connected to V1 layer IVCβ [36–39]. Synaptic buttons density is also based on experi-

ments [36–39]. The network has N = 4L2 neurons and forms square columnar structures,

each with Nc ≈ 200 neurons. Further details on the network architecture are discussed in

Methods.

Each neuron i is composed of a compartmental dendrite [d
(i)
m (t); m = 1, · · · , 100, Eq. (1)],

the soma [vi(t), Eq. (2)], and a compartmental axon [a
(i)
k (t); k = 1, · · · , 10, Eq. (3)]. The

action potential advances one compartment per time step t, coming from the dendrites

through the soma to the last axonal compartment:

d
(i)
1 (t+ 1) = λE

∑
j,n

a
(j)
n (t) ,

d
(i)
k (t+ 1) = λ

[
d
(i)
k−1(t) + E

∑
j,n

a
(j)
n (t)

]
, fork > 1,

(1)

vi(t+ 1) =


Θ
(
d
(i)
100(t)− vT

)
, if vi(t) = 0 ,

−R , if vi(t) = 1 ,

vi(t) + 1 , if vi(t) < 0 ,

(2)

a
(i)
1 (t+ 1) = Θ (vi(t)) ,

a
(i)
k (t+ 1) = a

(i)
k−1(t), for k > 1,

(3)

where λ = 0.996 is the attenuation constant (chosen to match experimental attenuation [28]),

vT = 10 mV is the firing threshold, R is the refractory period and E > 0 is the EPSP (which

has values of the order of 1 mV [28–30]). R is adjusted equal to total simulation time to

reproduce adaptation in the visual system [40] and to allow us to define network processing

time. The double sum in Eq. (1) is over all the axonal compartments of presynaptic neuron j

3



connected to the dendritic compartment of the postsynaptic neuron. The different quantities

of compartments for dendrites and axons in a single neuron model the different velocities of

the signal propagating in them [41].

Initial conditions are a
(i)
k (0) = d

(i)
m (0) = vi(0) = 0 ∀ (k,m, i). A 30 × 30 square of

photoreceptors near the corner of the Input layer is constantly active in order to start

activity. Then, interspersing small and large avalanches spontaneously emerge due to the

propagation of action potentials through dendrites and axons. We do not impose over the

system the separation of timescales, as commonly done in SOC models [15]. The only LGN

neurons that fire are the ones receiving input from the retina, so the order parameters will

saturate close but not equal to unity in the following results. Results are stable to different

initial conditions.

III. RESULTS AND DISCUSSION

The activity of the network is the sum of all the neurons firings at each time step and the

system’s processing time is the instant of the last spike of the network, marked with arrows

in Fig. 1A. We define the size s of an avalanche as the sum of all the activity between two

consecutive instants of silence, similarly to the experimental procedure [21]. In fact, each s

is the area under each of the peaks in Fig. 1A.

We analyze the phase transition by defining two order parameters: the density ρ of

activated neurons [43, 44] and the fractional size m ≡M/N of the largest avalanche [43, 44]

(M is the size of the largest avalanche). Notice that the Blume-Emery-Griffiths model also

exhibits two order parameters [45]. Near the critical point, we may write [11, 12, 43, 44]:

ρ(E;L) = L−β/ν⊥ ρ̄(|E − Ec|L1/ν⊥) , (4)

m(E;L) = L−Dm̄(|E − Ec|L1/ν) , (5)

χρ(E;L) = Lγ/ν⊥χ̄ρ(|E − Ec|L1/ν⊥) , (6)

where β, ν⊥, D, ν and γ are scaling exponents and m̄(x), ρ̄(x) and χ̄ρ are universal scaling

functions. χρ ≡ N
(
〈ρ2〉 − 〈ρ〉2

)
/ 〈ρ〉 is the susceptibility related to the order parameter

ρ [42]. The phase transition occur on Ec.

We also measure the avalanche size distributions, P(s), and complementary cumulative

distributions, F(s), the network processing time, T , and the avalanches’ autocorrelation,
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FIG. 1. Network activity and order parameters. Panel A: Temporal profile of the avalanches for

many EPSP. Arrows mark the processing time T of the network. For E = 1.1 mV, only very

small avalanches occur; E = 1.2 mV shows many small avalanches; for E = 2.0 mV there is a

dominating avalanche (compare to the dotted line that marks zero activity); and for E = 13.0 mV

the dominating avalanche takes over all the dynamics. Panel B: Density of activated neurons

ρ during total activity time, fractional largest avalanche m and χρ = N
(〈
ρ2
〉
− 〈ρ〉2

)
/ 〈ρ〉 [42]

as function of E for L = 99. χρ is normalized to unity for visualization. Panel C: FSS of ρ

order parameter [43, 44] yielding scaling exponent β/ν⊥ = 0.55(3) – Eq. (4). Panel D: FSS of m

order parameter [43, 44] yielding scaling exponent D = 1.1(1) – Eq. (4). Both fits were on the

transition point Ec = 1.19 mV . D may be fitted for every E in order to be compared with the

largest avalanche collapse exponent, D′ (see text). Vertical bars are standard deviation, light gray

indicates Griffiths phase and dark gray, weakly ordered phase.

C(t′), and power spectrum, S(f) (the latter may be compared with experimental data [16,
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FIG. 2. Processing time and avalanche size distributions. Panel A: Processing time T as function

of E for many L. Solid line indicates the asymptotic behavior of T given by LµT̄ (E). Panel A

inset: collapse plot T̄ = T/Lµ with µ = 1.0(1). Arrows indicate the minimum of T , vertical bars

are standard deviation (notice they are maximal in the light gray region), light gray is the Griffiths

phase and dark gray is the weakly ordered phase. Panel B: avalanches sizes distributions P(s) for

L = 99 and three different E. Note the bump around avalanches of size 200 for E = 1.88 mV.

This bump reveals the internal structure of the network. See text for discussion.

20, 24]):

F(s) ∼ s1−αG (s/M) , (7)

T (E;L) = LµT̄ (E) , (8)

C(t′) ∼ t′−θ exp (−t′/τ) , (9)

S(f) ∼ f−b , (10)

where α is the exponent of avalanche sizes distribution, M ∼ LD
′

is the largest avalanche,

µ is a scaling exponent, T̄ (E) is a universal scaling function, t′ is the time lag between

two avalanches, τ is the characteristic time of the autocorrelation cutoff and θ and b are

the autocorrelation and power spectrum exponents, respectively. As S(f) is the Fourier

transform of C(t′), θ+ b = 1 for C(t′) in the power-law regime. Also, notice that D′ = 2−D

because M ∼ 4mL2.

In typical critical systems, τ ∼ Lz defines the dynamical exponent, z [11, 13, 43, 44].

However, in Griffiths phases, τ ∼ exp
(
cLD

′)
, where D′ defines a typical dimensionality of

the system and is the scaling exponent of the largest avalanche [43, 44]. Additionally, χρ is

expected to be maximized during the whole extended critical region.
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FIG. 3. Avalanche sizes cumulative distributions. Panel A: Cumulative distribution collapse of

avalanches in disordered phase. Avalanches do not scale with system size (D′ = 0) but present a PL

regime with exponent α = 1.5(1). The PL region is due to noisy activity in the LGN since only small

and very short avalanches are present. Panel B: Cumulative distribution collapse of avalanches in

Griffiths phase with exponents α = 1.3(1) and D′ = 1.1(1). Panel C: Cumulative distribution

collapse of avalanches in weakly ordered phase with exponents α1 = 1.4(1), α2 = 1.72(8) and

D′ = 3.1(3). The bump separating both PL regimes is a consequence of the columnar structure of

the network, as it lies where s ≈ Nc. Panel D: Cumulative distribution collapse of avalanches in

strong ordered phase with exponents α = 1.5(1) and D′ = 2. The gap in this distribution shows

that processing occurs rather through a large dominating avalanche, so the PL scaling represents

only noisy avalanche activity in the LGN. The straight black lines guide the eyes over the collapse

of the PLs. Notice that α is the exponent of P(s) as well. D′ = 2−D is approximately obeyed.

Activity spreads as spiking circular waves throughout the layers as well as inside them.

In this work, we focus on the temporal profile of the activity, shown in Fig. 1A.
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FIG. 4. Autocorrelation, power spectrum and exponents overview. Panel A: Average autocorrela-

tion of avalanche sizes time series for L = 99 and many E. The solid line shows the exponential

fit to the autocorrelation cutoff for E = 1.6 mV giving τ = 16.2 time steps. The arrow indi-

cates the region in which C(t′) ∼ t′−θ. Panel B: Scaling law τ(L) for many E. Ignoring L = 20,

τ ∼ exp
(
LD

′
)

for 1.12 ≤ E . 1.2 mV characterizing the Griffiths phase [43, 44]. Panel C: Average

power spectra of avalanche sizes time series for L = 99 and many E. The straight lines indicate

the fit S(f) ∼ f−b for E = 1.18 mV, 1.6 mV and 2 mV as examples. Notice how the curves’ slope

smoothly vary and yield b & 1 inside the Griffiths phase (see panel D too). Color code corresponds

to that of panels A and B. Panel D: Overview of how exponents vary according to E. α1 and

α2 (only present in the weakly ordered phase) are the avalanche size distribution exponents, b

is the power spectrum exponent, θ is the autocorrelation exponent and τ is the autocorrelation

characteristic time. µ, ω and β/ν⊥ are not shown because they do not change. D is zero in the

disordered phase and does not change for E < Ec. Exponent θ is negative for E < 1.6 mV so it

does not appear in the logarithmic y-axis.
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A. Mean-field approximation

It is clear in Fig. 1A that there is a change in the activity profile as E is varied. The signal

may reach only a few neurons of each layer for E = 1.1 mV whereas for E > 1.19 mV, it

excites the whole network. Such a behavior arises from the competition between excitation

and dissipation.

At the point where excitation balances dissipation, one expects that every neuron in the

network will fire once. We will call this point the activation threshold, where E = Eth. In

order for any neuron i to fire, the signal that reaches the soma should be greater than or

equal to the firing threshold, vT :

n
(i)
in

〈
d
(i)
100

〉
≥ vT , (11)

where n
(i)
in is the average amount of inward synapses per dendritic compartment of the post-

synaptic neuron i,
〈
d
(i)
100

〉
= r

(i)
100(λ)E is the average signal arriving on the soma compartment

from one single synapse on any dendritic compartment of neuron i and r
(i)
100(λ) = λ50(1+lnλ)

is the fraction of the signal that reaches the soma as function of λ from a single presynaptic

cell. See Methods for a derivation of
〈
d
(i)
100

〉
.

As the structure of the network is fixed, we may estimate n
(i)
in ≈ 6.244 [see Table (II)]. It

is then simple to calculate Eth from Eq. (11): Eth = vT/
[
n
(i)
in r

(i)
100(λ)

]
≈ 1.95 mV, which is

close to the average experimental value of the E in the cortex [28–30].

It is important to notice how simplistic this approximation is:
〈
d
(i)
100

〉
will depend on the

distribution of n
(i)
in over the dendritic compartments, which in turn depends on the quantity

of dendritic compartments. The more synapses arriving per dendritic compartment the

smaller Eth will be. For instance, if we use the values of Table I, then n
(i)
in = 6.5 and

Eth ≈ 1.88 mV.

B. Computational results

We performed between one hundred and three hundred realizations of the system for each

EPSP of each L in order to calculate averages [Eqs. (4) to (10)] and standard deviations

(vertical bars in Figs. 1 and 2).

Fig. 2A shows that the processing time has a non-monotonic behavior (clearer in the

inset), with a sharp rise, followed by a deep minimum at E = 1.18 mV (pointed by arrow)
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and another sharp rise, reaching its highest value at E = 1.21 mV. After that, T slowly

decays asymptotically towards a constant through a landscape full of shallow minima. The

asymptotic behavior of T (E;L) for E > Ec = 1.19 mV (the solid black curve in Fig. 2A) is

a crossover of two power laws (PL),

T̄ (E) ∼
(
E−ω + E−1/ω

)
, (12)

where ω = 3.1(2). The scaling exponent of the processing time is µ = 1.14(6), as described

by Eq. (8).

Fig. 1B shows the density of activated neurons during whole simulation time, the frac-

tional largest avalanche and the ρ susceptibility as functions of E for L = 99. χρ is maximum

in the range 0.12 . E . 1.2 and has a sharp peak at E ≡ Ec = 1.196 mV. We conclude that

this range corresponds to a Griffiths phase, which we check further on via the scaling anal-

ysis of the autocorrelation characteristic time. Note that Ec is even closer to experimental

values of EPSP in the cortex [28–30]).

The FSS analysis of ρ in Fig. 1C shows that the phase transition occurs at Ec =

1.19(1) mV (which is of the same order as our naive mean-field calculation) with scaling

exponent β/ν⊥ = 0.55(3) [Eq. (4)]. The deep minimum in T lies then on the onset of the

phase transition. Additionally, T has maximum standard deviation during all the Griffiths

region, meaning that although the system process information quickly in average, it is flex-

ible enough to adapt to external input as suggested by experimental work [25]. Therefore

the processing of information may reliably occur only around this region. The FSS of χρ,

not shown, yields γ/ν⊥ = 3.1(2) [Eq. (6)].

The FSS analysis of m in Fig. 1D shows that a dominating avalanche appears slowly

as E increases (both in size and duration, the latter pictured in Fig. 1A) starting from

Ec with scaling exponent D = 1.1(1) [Eq. (5)]. Both order parameters mark a dynamical

order-disorder continuous phase transition because the structure of the network is always

disordered (see Methods).

Fig. 2B shows the distribution of avalanche sizes s for L = 99 and three typical EPSP.

The three distributions have PL dependence P(s) ∼ s−α1 on small s. These avalanches

happen mainly during the passage of the signal through the LGN layer, when activity is

starting to propagate in the network. For E = 1.1 mV no larger avalanche appears whereas

for E = 13 mV there is only one single large avalanche. However, in between these two
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regimes there is a region in which many large avalanches slowly appear as E is increased

(the weakly ordered regime of Fig. 1B). The large avalanches in this regime are also PL

distributed with exponent α2.

Figs. 3A–D show the collapse plot of the complementary cumulative distributions of the

avalanche sizes, G(s/M) ∼ F(s)sα−1 with M ∼ LD
′

from Eq. (7), used to estimate α

and the cutoff exponent of the largest avalanche, D′. We found values 1.3 ≤ α1 ≤ 1.5

and α2 ≈ 1.7. These values agree very well with experiments [19, 25] and with Maximum

Likelihood estimation (see Methods).

Sethna’s relation [27] [a = (τ − 1)/(α− 1), where τ is the exponent of avalanche duration

distribution] is sometimes used to determine the system’s critical point [25]. This relation

holds for all distributions shown in Figs. 2B and 3 within less than 10% error, whether in the

disordered, Griffiths or ordered phases. Therefore care should be taken when using solely

this relation to check for criticality, as also noted by other authors [26].

The largest avalanche scales according to D′ = 0 in the disordered phase, as expected.

In the ordered phase, D′ = 2 meaning that the avalanches are spreading simultaneously

inside each layer. The Griffiths phase (including the transition point) has D′ = 1.1(1). The

surprising scaling of avalanche distributions in the critical region means that avalanches are

spreading mainly inside V1 model columns via a branching process (the signal goes back

and forth through the feedback loop between layers VI and IVCβ). Notice that these values

follow the expected relation D′ = 2−D (having D′ and D independently estimated).

The bump around avalanches of size s ≈ 200 ≈ Nc is a characteristic scale for small

avalanches in the weakly ordered regime because it does not scale with system size. It is

then caused by the amount of neurons in the columns of our V1 model. If the number of

neurons in a column Nc tended to N this bump would vanish, leaving the system with only

one characteristic scale and one exponent α similarly to the model presented by Teramae

& Fukai [46].

We also determine the scaling of the avalanche time series autocorrelation characteristic

time, τ , which is expected to be exponential inside the Griffiths phase [43, 44]. Fig. 4A

shows C(t′) for many E and L = 99. Each curve has been averaged over several trials. We

assume C(t′) to follow Eq. (9) and fit its exponential cutoff for each E and L to obtain τ

(e.g. the solid black curve in Fig. 4A).

The scaling law τ(L) is plotted in Fig. 4B. We show the fit of τ ∼ exp
(
cLD

′)
for E =

11



1.19 mV ignoring L = 20 (the thick solid black line) yielding D′ = 1.1(1) inside the Griffiths

region. This result agrees with our expectation that D′ should be the scaling exponent of

the largest avalanche [43, 44]. However, our data may also be fitted by τ ∼ Lz yielding

z = 1.0(1) (not shown) if L = 20 is considered. Therefore, we rely mostly on the fact that

the susceptibility χρ diverges inside the range 1.12 ≤ E . 1.2 mV to conclude that it is

indeed a Griffiths phase [47].

We have ignored L = 20 points for fitting in Fig. 4B because each of the L = 20 network’s

columns includes a fraction of more than 12% of all its neurons, which is significantly different

from the other L network column fractions (3% for L = 40 and less than 1% for L = 80, 90).

Avalanches thus are able to grow larger and faster than expected in L = 20 networks than

for other L with fixed E.

The power spectrum shows a stable f−b behavior with b & 1 inside the Griffiths phase

(see Fig. 4C). In general, b varies in the interval [0; 1.7] agreeing very well with experimental

results for the visual cortex [16, 20, 24]. Fig. 4 summarizes how all the exponents of our

study vary with E. Exponent θ for E < 1.6 mV do not appear in the figure because it

is negative. α2 only appears inside the weakly ordered phase where the second scale is

noticeable.

IV. CONCLUDING REMARKS

We studied a model for the primary visual cortex presenting its characteristic columnar

structure. The key elements of this model are the neurons dynamical structure and dendritic

excitation/dissipation balance. While the delay due to action potential propagation in the

dendrites and axons causes the avalanches, the signal attenuation balances the network

information processing. If we were to model lateral inhibition inside the layers, we would

expect the activation threshold to grow leaving the dynamics generally unaltered.

We verified that the network processing time quickly decays as E reaches the critical point.

The network activation threshold and the phase transition point are close to the average

value of EPSP in the cortex [28–30]. The network is able to reliably process information

only within a limited E range around the Griffiths and weakly ordered phases because only

in this region the variability of the response is maximal and the processing time is minimum

allowing for adaptation in the system’s response. In the other phases either the network will

12



respond with noisy activity or will fire a single dominating avalanche.

The model columnar structure was evidenced in the characteristic scale of small avalanches

in the avalanches sizes distributions in the weakly ordered regime. We hypothesize then

that the two power-law regimes could be experimentally found if one were able to directly

measure spike avalanches in V1 (not simply local field potentials), because V1 is naturally

organized in columns [48].

The Griffiths phase presence is confirmed by the divergence in the susceptibility, although

the scaling law of the autocorrelation cutoff characteristic time is inconclusive. Inside it,

the model exhibits 1/f b power spectrum with b & 1 which accurately matches experimental

results [16, 18, 20, 24]. Our study stresses that being quasi-critical is advantageous for

the brain sensory networks and could be further used to help the development of pattern

recognition applications because of the short processing time near the critical point.

We conjecture that the studied model belongs to Dynamical Percolation-like universality

class because its dynamics resembles that of the generalized epidemic process with immu-

nization [11, 49]. The network structure was shown to fundamentally shape the dynamics

of the system, so we are working to define a measure of its dimensionality in order to be

able to better characterize its universality class.

Some future work may focus on improving some of the model’s features, like: the ex-

citatory field of each neuron may change with depth; disorder in E; synaptic dynamics or

plasticity [25, 31, 32] to model adaptability; and lateral inhibition. Finally, we hope to

provide here a kinematic framework for microscopic cortical modeling.
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VI. METHODS

A. Network architecture

The full network has Nfull = 2Nio + N elements, where N = 4L2 is the amount of

neurons composing the internal layers (LGN, VI, IVCβ and II/III, each with L2 neurons),
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Nio = (10L)2 is the amount of elements in each of the input/output layers. An example of

the look of the network is in Fig. 5A for L = 5. The architecture of the network is illustrated

in Fig. 5B, where arrows point the direction of the connections towards which the signal is

propagated.

Layers are stacked as shown in Figs. 5B,C. We can assign each element i with a spatial

position, ~ri = (xi, yi, zi), labeling layers from Input (zi = 0) to Output (zi = 5) and integers

(xi, yi) ∈ [1;L]× [1;L]. The elements of the input layer are the photoreceptors of the retina.

The elements of the output layer are only the axonal terminals which would connect to

dendrites in the secondary area of the visual cortex (V2). The elements of the remaining

internal layers are neurons.

There is a matrix of 10 × 10 photoreceptors positioned in front of each neuron of the

LGN (i.e. Nio photoreceptors). On the other end of the network, each neuron in layer

II/III sends 100 synapses towards V2 (i.e. a total of Nio axonal terminals would connect

to V2). The 100 axonal terminals of a given neuron are positioned in front of it, randomly

distributed inside a 10× 10 matrix.

All the connections are chosen and fixed in the beginning of the simulation (quenched

disorder). The amount of connections that each element of a given layer attempts to send

to any adjacent layer is in Table (I). Boundary conditions are free, which means that

any attempted synapse that would fall outside of the ranges of the postsynaptic layer are

discarded. Thus, the actual number of synapses per presynaptic element is a little smaller

than the values in that table.

Table (II) shows the amount of synapses that a given element of any layer receives. The

network is symmetric in average in the sense that mean number of synapses per presynaptic

neuron is almost equal to the mean number of synapses per postsynaptic neuron. Tables (I)

and (II) also show the adjacency of layers.

In order to create a connection, each presynaptic neuron, j, projects its axon towards a

region of l2 = 7 × 7 neurons of an adjacent layer. The postsynaptic neurons in this region

are then randomly selected via a bidimensional Gaussian distribution, PG(x, y;xj, yj, σd),

centered in the (xj, yj) coordinates of the presynaptic neuron with standard deviation σd = 3

in each direction.

A columnar structure emerges in the network as a consequence of picking neighbors in

the limited region of l2 neurons. V1 experimentally displays such structure [48]. Therefore,
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FIG. 5. Elements of the V1 model. A: A realization of the L = 5 network. Circles are photorecep-

tors (Input), neurons (internal layers) and axonal compartments (Output). Layers are linearized.

B: Architecture of the network. C: Spatial organization of the network of N = 4L2 neurons. The

columnar structure is highlighted in red. There is a column of size Nc = 4l2 = 196 neurons centered

on each neuron of the network. D: Compartmental scheme of neurons. The probability, P(ak), of

choosing a presynaptic axonal compartment, ak, of any neuron is exponential such that most of

the synapses start from the end of the axon (left). The probability, P(dm), of choosing a dendritic

postsynaptic compartment, dm, is Gaussian with mean 50 and standard deviation 10, so that most

of the synapses lay in the middle of the dendrite (right).
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From \ To LGN VI IVCβ II/III Output

Input 1 - - - -

LGN - - 500 - -

VI - - 1100 350 -

IVCβ - 600 - 700 -

II/III - - - - 100

TABLE I. The quantity of attempted synapses per presynaptic element from a specific layer (rows)

to another layer (columns). Presynaptic element may be a photoreceptor (from Input layer) or

a neuron (from internal layers). There are 100 photoreceptors in the Input layer for each neuron

of the LGN. There are 100 axon compartments of each neuron in the II/III layer connecting to

V2. These values are predefined in the beginning of the simulation, but are not exactly achieve in

practice because of free boundary conditions.

each column has approximately Nc = 4l2 = 196 neurons, see Fig. 5C. If one consider the loop

between layers IVCβ and VI, then columns would virtually have Nc = 5l2 = 245 neurons.

The connections from Input layer to LGN are created using the same procedure.

Once pre and postsynaptic neurons are chosen, synapses are formed between one axonal

compartment, a
(j)
k , chosen with exponential probability PE(k) = (10/4) exp (10k/4), of the

presynaptic cell, j, and one dendritic compartment, d
(i)
m , chosen with Gaussian probability

From \ To LGN VI IVCβ II/III Output

Input 98 - - - -

LGN - - 488 - -

VI - - 1073 293 -

IVCβ - 585 - 683 -

II/III - - - - 1

TABLE II. The quantity of synapses per postsynaptic element that a specific layer (column) re-

cieves from another layer (row). Postsynaptic elements are all neurons. There are 100 axonal

compartments in the output layer for each neuron and each of them forms a synapse with V2. The

averages were performed when assembling a L = 99 network and are similar to the values from

Table (I).
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PG(m; d(c), σd), of the postsynaptic cell, i, where d(c) = 50 and σd = 10. See Fig. 5D.

The probability of choosing a dendritic compartment is taken as Gaussian because con-

secutive events of connecting to any two compartments should be uncorrelated and most of

the synapses should arrive around the center of the dendrites [28]. The probability of choos-

ing an axonal compartment is exponential because axons should transport signals for as long

as possible, thus most of the outward synapses must come from the end of the axon [36–39].

The neurons of this model could be mapped into simple celular automata, like the one

studied by [7]. One should then adjust the probability of exciting a neighbor (in the re-

ferred model) as proportional to the fraction of the signal that would reach the soma in

our model (derived in Appendix VI). Also, the amount of refractory states should be taken

equal to the entire simulation time. Then, it is just a matter of building the structure of the

network according to the rules presented in this section.

B. Macroscopic measurements

The activity of the network at time t, A(t), is just the sum of all neurons firings at each

time step,

A(t) =
N∑
i=1

δvi(t),1 , (13)

where δi,j is the Kronecker delta. The density of activated neurons (our first order parameter)

is simply

ρ =
1

N

T∑
t=0

A(t) , (14)

where T is the processing time of the network (total simulation time). Notice that ρ thus

defined is already normalized because each neuron may only fire once.

The avalanche size, s(n), is the sum of network activity,

s(n+ 1) =

tn+1∑
t=tn

A(t) , (15)

where A(tn) = 0 ∀ n. The largest avalanche is M = 〈max(sn)〉 (average is taken across

several trials for each E) and the ratio m = M/N – the fractional largest avalanche – is the

second order parameter.
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The avalanches autocorrelation function, C(t′), and power spectrum, S(f), are defined

as:

C(t′) = 〈s(n)s(n− t′)〉 , (16)

S(f) =

∣∣∣∣∫ +∞

−∞
s(n) exp (−2iπfn) dn

∣∣∣∣2 . (17)

The characteristic time, τ , of the correlation function is defined by the exponential cutoff

fit of C(t′) ∼ exp (−t′/τ) for large t′. Moreover, if S(f) ∼ f−b and C(t′) ∼ t′−θ for small t′,

then b+ θ = 1 because S(f) is the Fourier Transform of C(t′).

C. Average signal in soma

Consider the structure described in Methods for the dendrites of the neurons and the

dynamics described in the main text. If a single synapse arrives at the compartment dn(0)

of some neuron in instant t = 0, then after k−n time steps, the signal in dendrite dk(t = k−n)

is dk = λk−nE with average 〈dk〉 =
〈
λk−n

〉
E (we omit time for simplicity).

The synapses arrive in any dendritic compartment, dn, with Gaussian distribution

PG(n; 50, 10) with mean d(c) = 50 and standard deviation σd = 10. Then, the average〈
λk−n

〉
is given by: 〈

λk−n
〉

= λk
∫ +∞

−∞
λ−nPG(n)dn , (18)

where the integral is continuously evaluated within infinity limits because more than 99%

of the Gaussian distribution lies within the bounds of the dendrite.

The integrand in Eq. 18 may be manipulated in order to still get a Gaussian function

multiplied by a constant:

〈
λk−n

〉
= λk−d

(c)+σ2
d ln(λ)/2

∫ +∞

−∞
P̄G(n)dn , (19)〈

λk−n
〉

= λk−d
(c)+σ2

d ln(λ)/2 (20)

where P̄G(n) is a normalized Gaussian with displaced mean. Notice that rk(λ) ≡
〈
λk−n

〉
=

〈dk〉 /E is the fraction of the signal that reaches compartment k.

If the synapse (or external signal) arrives localized at compartment d(c) (i.e. σd = 0),

then rk(λ) = λk−d
(c)

is a simple exponential decay with characteristic time −1/ ln(λ), as

experimentally expected [28]. Although in reproducing experiments, the arriving signal
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compartment should be farther than 100 units from the soma. In our model, the signal

that reaches the soma is the signal from k = 100. Thus, the average signal in soma is

〈d100〉 = r100E.

D. Statistical Test

We performed a Maximum Likelihood test in our data. The columnar structure in the

model is responsible for the presence of a bump in the format of avalanches distribution

(see Fig. 3). To take this into account we used a censored Maximum Likelihood estimator

which uses only the data that exhibits a power law. The formula follows the description for

discrete power laws made by [50]:

α̂ = arg max
α

[−n ln ζ (α, smin, smax) +H], (21)

H =
n∑
i=1


ln
(∑sL

k=smin
k−α

)
for si = sL ,

ln
(∑smax

k=sR
k−α

)
for si = sR ,

ln (si
−α) else

(22)

where s ≥ smin ≥ 1 and the Hurwitz zeta function is defined by

ζ(α, smin, smax) = ζ(α, smin)− ζ(α, smax) , (23)

where

ζ(α, s) =
∞∑
i=1

1

(i+ s)α
. (24)

We applied the maximum likelihood test to the complementary cumulative distribution

for the E values shown in 3 in L=99. For E = 1.10, E = 1.20 and E = 13.0 we obtained

slopes with values α̂ = 1.46, α̂ = 1.34 and α̂ = 1.50, respectively. For E = 1.88 we divided

the distribution in two parts in order to avoid the influence of the bump around avalanches

of size 200. For the first part (with smin = 1, smax = 190) we obtained a slope with value

α̂1 = 1.69 and for the second one (considering smin = 600, smax = 1500) we obtained the

value α̂2 = 1.57. All these values are fairly close to the values obtained by the avalanche
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distribution collapse.
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